Volumetric Scanning Microwave Microscopy Analytical and Research Tool for Nanotechnology
(V-SMMART NANO)
Start date: Mar 1, 2012,
End date: Feb 28, 2015
PROJECT
FINISHED
This project will produce a new tool, the Volumetric Scanning Microwave Microscope (VSMM), for non-destructive 3D nanoscale structural characterisation. Full development of this new tool will take place ready for commercial exploitation within the project duration. The consortium, comprising three SMEs, a Large Company, an RTD Performer and two Research Institutions, will develop and commercialise the VSMM.The VSMM will probe the local reflection and transmission microwave spectroscopy of key materials properties, measuring complex permittivity, conductivity, resistivity, and magnetic response, and hence structural and chemical material constitution with 3D nanoscale resolution. Workpackages will address the technical development of the tool and demonstrate its ability to characterise the 3D structure in situ at the nanoscale with application to relevant real life systems including nanoparticle drug uptake in biological cells, domain structure in ferroelectric devices and trap mechanisms in solar cells. Integrated into this process is ease of use through dedicated work-flows and intuitive real time visualisation for results optimisation and processing. Methods for calibration and provision of traceability are incorporated into the project from the start: this will ensure that VSMM measurements will be quantitatively meaningful and optimised for accuracy and will ensure the most efficient route to commercialisation and uptake of the VSMM.The project aims to produce significant impact for European SMEs, they will benefit both from the market for SPM probe tips and ancillary equipment (e.g. calibration kits) for the VSMM and as end-users. Finally, the fact that the VSMM will utilise SPM cantilever-probe technology will ensure that it is readily compatible with a full range of other SPM-based tools – opening up its future role in integrated multi-physical materials characterisation at the nanoscale.
Get Access to the 1st Network for European Cooperation
Log In