Sustainable C-X and C-H Functionalization Catalyze.. (SUSCATCU3)
Sustainable C-X and C-H Functionalization Catalyzed by Copper(III) Species
(SUSCATCU3)
Start date: Dec 1, 2011,
End date: Nov 30, 2017
PROJECT
FINISHED
On the basis of recent PI’s findings, this project aims to take advantage of the Cu(I)/Cu(III) redox pair chemistry to perform a wide range of copper catalyzed organic transformations under very mild conditions, i.e. aryl-heteroatom cross coupling, aryl-halide exchange, aryl fluorination, and direct C-H functionalization reactions. The development of new sustainable methodologies alternative to Pd-based ones will make a tremendous impact into routine organic synthesis procedures and into selective late-stage modification of pharmaceuticals. Pd is the metal of choice in most of aryl-heteroatom coupling reactions but toxicity and intrinsic cost are serious drawbacks for production of drugs. Cu has become a real alternative to Pd due to low cost, low toxicity and continuously increasing efficiencies of Cu-catalyzed coupling reactions. However, the mechanistic details for Cu-based processes are still poorly understood and experimental conditions are far from sustainable. Fundamental Cu(I)/Cu(III) oxidative addition and reductive elimination steps are often invoked but remained unobserved until the recent well-defined aryl-Cu(III)-halide key species reported by the PI. An initial goal consists in the in-depth mechanistic comprehension of Cu(I)/Cu(III) redox steps in a series of electronically and structurally tuned aryl-halide model systems. A subsequent goal will be the exploration of tridentate pincer-like systems in aryl-heteroatom coupling reactions with simple aryl-halides, aiming to find milder and efficient catalysts by redirecting mechanistic pathways towards the stabilization of aryl-Cu(III) species. Exploitation of Cu(I)/Cu(III) redox chemistry in direct C-H functionalization will also be undertaken. Exploration of analogous M(I)/M(III) redox chemistry with Au and Ag will be performed in order to gain a complete mechanistic picture of these reactions mediated by coinage metals, building on the necessary knowledge to design future generations of catalysts.
Get Access to the 1st Network for European Cooperation
Log In