Search for European Projects

Gene transfer techniques in the treatment of cardiovascular diseases and malignant glioma (FUTUREGENES)
Start date: Jun 1, 2010, End date: May 31, 2015 PROJECT  FINISHED 

Background: Poor angiogenesis and collateral vessel formation lead to coronary heart disease, claudication, infarctions and amputations while malignant glioma is one of the most aggressive proangiogenic tumors leading to death in a few months. For these diseases either stimulation or blocking, respectively, of angiogenesis may provide novel treatment options. Advancing State-of-the-Art: Our hypothesis is that in ischemia it will be possible to support natural growth of blood vessels with Therapeutic angiogenesis and lymphangiogenesis by using local gene transfer of the new members of vascular endothelial growth factor (VEGF) family and their receptors. New co-receptors, designer mutants and PCR suffling products of VEGFs will be used. New vector technology will be used to achieve long-lasting effects of VEGFs. We aim to develop novel site-specifically integrating, targeted, regulated vectors to precisely express the new VEGFs, their soluble decoy receptors and single-chain therapeutic antibodies (scFv) for pro- and anti-angiogenic purposes. As novel approaches, we have developed metabolically biotinylated lenti- and adenoviruses suitable for targeting and Epigenetherapy where siRNA/miRNAs and short nuclear RNAs regulate endogenous gene expression at the VEGF promoter level via modification of histone code. scFv library for endothelial cells and lentivirus-siRNA library directed to all human and mouse kinases will be screened to identify new mediators of angiogenesis in order to develop next generation pro- and antiangiogenic therapies. Based on our strong track record in Clinical applications, the best new pro- and antiangiogenic approaches will be taken to phase I clinical studies in myocardial ischemia and malignant glioma. Significance: This work should lead to significant advances and new therapies for severe ischemia and malignant glioma. Epigenetherapy and new site-specifically integrating, regulated vectors should be widely applicable in medicine.
Up2Europe Ads

Details