Energy Efficient E-band transceiver for backhaul o.. (E3NETWORK)
Energy Efficient E-band transceiver for backhaul of the future networks
(E3NETWORK)
Start date: Dec 1, 2012,
End date: May 31, 2016
PROJECT
FINISHED
Network operators are looking for cost effective solutions to manage and upgrade their networks to meet the user experience demanded by European citizens. The backhauling infrastructure is becoming a bottleneck.E3Network will design an E-band transceiver for the backhaul infrastructure of the future networks. It will work in the E-band, which enables highly focused "pencil beam" transmissions and huge bandwidth. The pencil-beam property facilitates a high degree of frequency reuse in the deployment of backhaul links and reduces EMF exposure of European citizens. The transceiver will use modern digital multi-level modulations to achieve high spectral efficiency. This together with the huge bandwidth will enable high capacities above 10 Gbps.The RF analogue front-end of the transceiver will be a highly integrated circuit using advanced SiGe BiCMOS technology, which enables energy and cost effectiveness. However, a consequence of transistors length reduction is an exponential increase of process variations, leading to over-constrained designs to guarantee sufficient post-fabrication performance yield. In order to achieve the required performance, a mixed analogue-digital design approach together with novel signal processing methods will be applied.Research will be driven by the end-user and industrial partners to ensure that it address the needs of the future generations of the mobile network infrastructure. The potential for an increased economic and energy efficiency of access/transport infrastructures will be illustrated by a prototype integrated in the network providing communication over 1 km with availability of 99.995%. The developed backhaul technology will strengthen the position of European Industry in the field of network infrastructure technology. It will facilitate the transition to smaller and more energy efficient base stations, which are key for the novel network topologies needed to address the new patterns of usage of citizens.
Get Access to the 1st Network for European Cooperation
Log In