Detection and understanding of landslides by obser.. (SLIDEQUAKE)
Detection and understanding of landslides by observing and modelling gravitational flows and generated earthquakes
(SLIDEQUAKE)
Start date: May 1, 2014,
End date: Apr 30, 2019
PROJECT
FINISHED
The goal of the project is to take a major step in improving the detection and understanding of landslides and their modelling at the field scale through the analysis of generated seismic waves. The seismic signal generated by landslides (i. e. landquakes) provides a unique tool to estimate the properties of the flow and its dynamics. Indeed, the stress applied by the landslide to the ground, which generates seismic waves, is highly sensitive to the flow history and therefore to the physical properties during mass emplacement. The strategy will be to combine a very accurate description of the landslide source, and the simulation and measurements of landquakes from the laboratory to the natural scale, by leading an ambitious interdisciplinary project involving numerical modelling, laboratory experiments and observation. The methodology will be to (1) develop thin layer models for granular flows over a complex 3D topography to alleviate the high computational costs related to the description of the real topography, taking into account the static/flowing transition and the fluid/grains mixture, both playing a key role in natural flows; (2) simulate the generated seismic waves by coupling landslide models to state-of-the-art wave propagation models. An ambitious objective will be to develop efficient coupling methods; (3) develop laboratory experiments of seismic emissions generated by granular flows to test the models and understand the physical processes at work; (4) analyse, simulate and invert natural landquakes making use of underexploited high-quality seismic and geomorphological data, in particular on volcanoes.An ultimate objective will be to design a new generation of landslides models, reliable methods and operational tools for detection of gravitational flows, and interpretation of seismic data in terms of landslide properties. This tools will be transferred to the scientific community and to the observatories in charge of monitoring landslide activity.
Get Access to the 1st Network for European Cooperation
Log In