Compact, high-energy, and wavelength-diverse coher.. (ASEL-MID-IR)
Compact, high-energy, and wavelength-diverse coherent mid-infrared source
(ASEL-MID-IR)
Start date: Sep 1, 2011,
End date: Aug 31, 2015
PROJECT
FINISHED
The mid-infrared range of the electromagnetic spectrum is an active field of laser science with imminent applications ranging through diagnostic medicine, free-space communications, process control, and trace gas detection. Given the wealth of applications within this spectral window, the technology for mid-IR sources of coherent radiation is still in development. Existing techniques for mid-IR lasers employ solid-state heterostructure devices, gas lasers, mid-IR lasing media, and nonlinear frequency conversion. The latter approach is a reliable method to harness the available near-infrared laser technology and nonlinear media for efficient mid-IR generation. We envision a compact, high-power, and wavelength-diverse implementation for a mid-IR source, based on a near-infrared, Q-switched diode-pumped solid-state laser and both the second- and third-order optical non-linearities. Through use of stimulated Raman scattering and optical parametric oscillation, we discuss methods to generate multi-line, tunable emission at 3-6 micron wavelength range. We also outline the scalability and the benefits of the proposed design for multi-band applications, where many distinct wavelengths could be utilized. Details regarding the project planning and the expected impact are also given.
Get Access to the 1st Network for European Cooperation
Log In