Wander
(WANDER)
Start date: Sep 1, 2013,
End date: Aug 31, 2017
PROJECT
FINISHED
"Falls are an urgent problem in our society, being one of the most frequent causes of hospitalization and death amongthe elderly. More than 1 out of 3 adults over the age of 70 fall within one year. A key factor is impairedbalance.Robotic orthoses already offer astonishing capabilities to people with locomotor impairments. However, stillmany open questions need to be solved before they will let users regain (or even outperform) the capabilities of thehealthy sensorimotor system, in particular regarding balance. WaNDER addresses three major bottlenecks on thisway:1. In physiological balance control, the upper body, which accounts for more than two thirds of the body mass,plays an important role. In modeling and assistive technology for locomotion, however, these mechanisms havewidely been neglected, and a leg-focused view prevails. In WaNDER, we will explicitly investigate the role ofthe upper body for balance and locomotion, to develop novel robotic interventions.2. Humans almost instantaneously adapt to a changed environment, for example when interacting with roboticdevices. This is particularly relevant in training applications, where human learning is the fundamental goal. InWaNDER, we will investigate how robotic devices should optimally adapt to and co-adapt with the user, in aprocess of mutual adaptation, to optimize training outcome in neurorehabilitation.3. Most wearable gait-assisting devices today target other purposes besides balance control, making them lesssuitable for patients who have deficits only in this task. Going beyond the possibilities of exoskeletal designs,we will investigate frontier hardware concepts to complement balance control in daily life. The goal hereby is toprovide assistance and balance training as part of a patient’s daily life, blurring the border between “assistive”and “therapeutic” technology."