PAssive and electro-optic polymer photonics and InP electronics iNtegration for multi-flow Terabit transceivers at edge SDN switcHes and data-centER gateways
PAssive and electro-optic polymer photonics and In.. (PANTHER)
PAssive and electro-optic polymer photonics and InP electronics iNtegration for multi-flow Terabit transceivers at edge SDN switcHes and data-centER gateways
(PANTHER)
Start date: Jan 1, 2014,
End date: Dec 31, 2016
PROJECT
FINISHED
Multi-rate, multi-format and multi-reach operation of optical transceivers is important, but it is not enough for next generation terabit products. What is still missing to make these products viable is a solution for the flexible control of this enormous capacity at the optical layer and its distribution among a number of independent optical flows. PANTHER aims to provide this solution and develop multi-rate, multi-format, multi-reach and multi-flow terabit transceivers for edge switches and data-center gateways. To this end, PANTHER will combine electro-optic with passive polymers and will develop a novel photonic integration platform with unprecedented potential for high-speed modulation and optical functionality on-chip. It will also rely on the combination of polymers with InP gain chips and photodiode arrays, and on the use of the InP-DHBT platform for driving circuits based on 3-bit power-DACs and high-speed TIA arrays. Using 3D integration techniques, PANTHER will integrate these components in compact system-in-package transceivers capable of operation at rates up to 64 Gbaud, operation with formats up to DP-64-QAM, spectral efficiency up to 10.24 b/s/Hz, capacity using a dual-carrier scheme up to 1.536 Tb/s, and flexibility in the generation and handling of multiple optical flows on-chip. This impressive performance will come with a potential for 55% power consumption reduction and more than 60% cost/bit reduction, taking into account benefits from the material system, the integration concept, the operation at high baud-rates and the possibility for IP traffic offloading. PANTHER will incorporate the transceivers in edge switch and data-center gateway architectures and will evaluate their performance in lab and real-network settings. Finally, PANTHER will develop a thin software layer that will control the operation parameters of the transceivers, pioneering in this way the efforts for extending the SDN hierarchy down to the flexible optical transport.
Get Access to the 1st Network for European Cooperation
Log In