Energy efficient UV LED curing without inerting (UV LED)
Energy efficient UV LED curing without inerting
(UV LED)
Start date: Jan 1, 2011,
End date: Dec 31, 2012
PROJECT
FINISHED
"The proposed project is focused on supporting more than 60 000 SMEs that produce wood products in the EU, by reducing their energy consumption. EU industrial wood product manufacturers are coming under increased competition from imports and are looking to reduce their costs. About 11% of industrial wood products in the EU are coated with UV curable coatings, which contain zero VOCs and are fast curing. UV LED lamps, which emit near-UV radiation, are 60-80% more energy efficient than conventional UV lamps and have environmental, health and safety benefits, but UV LED cured coatings cure much slower than coatings cured with traditional UV lamps, even under an inert atmosphere. The technological objective of the UVLED project is to enable UV coatings to cure using UV LED lamps at the same rate as conventional UV curing, without the need for an inert atmosphere. Our approach is to prepare new, high efficiency near-UV photoinitiator packages, by developing novel silicon- and germanium-based photoinitiators and new chemical methods of overcoming oxygen inhibition. As a result of the UVLED project, we expect to improve our collective competitiveness and generate increased sales of coating and equipment products into the EU industrial wood products market of at least €106M over a 5 year period. In addition, we estimate that an end-user with just one UV curing unit would save about €13K in energy costs per year, compared to the use of conventional UV curing lamp systems. We therefore expect to improve the competitiveness of the European coated wood products industry. Our consortium includes 4 SMEs that represent different aspects of the supply chain from photoinitiator manufacturer to the wood applicator. Although this project focuses on UV LED industrial wood coatings, the materials developed have extensive application to inks, vinyl flooring and conformal coatings too. Therefore this technology has considerable potential value outside the defined scope of this project"
Get Access to the 1st Network for European Cooperation
Log In