Direct ElectroChemical Oxidation Reaction of Ethan.. (DECORE)
Direct ElectroChemical Oxidation Reaction of Ethanol: optimization of the catalyst/support assembly for high temperature operation (DECORE)
(DECORE)
Start date: Jan 1, 2013,
End date: Dec 31, 2016
PROJECT
FINISHED
The main general goal of DECORE is to achieve the fundamental knowledge needed for the development of a fuel cell (FC) electrode, which can operate efficiently (both in terms of activity and selectivity) as the anode of a direct ethanol (EOH) FC (DEFC) in the temperature range between 150-200 °C (intermediate-T). Such a technology is still lacking in the market. The choice for EOH as an alternative energy source is well founded on the abundance of bioethanol, and on the relatively simpler storage and use with respect to other energy carriers. The intermediate-T is required for an efficient and selective total conversion of EOH to CO2, so exploiting the maximum number of electrons in the DEFC. DECORE will explore the use of fully innovative supports (based on titanium oxycarbide, TiOxCy) and nano-catalysts (based on group 6 metal carbides, MCx, M=Mo,W), which have never been tested in literature as anodes for DEFCs. The new support is expected to be more durable than standard carbon supports at the targeted temperature. The innovative nano-catalysts would be noble-metal free, so reducing Europe’s reliance on imported precious metals. To tailor the needed materials, the active role of the support and nano-catalyst will be studied at atomic level. Demonstrating an activity of such nano-catalyst/support assembly at intermediate-T would open a novel route where DEFCs with strongly reduced production costs would have an impact on a fast industrialisation. The power range for the envisioned application is of the order of hundreds of Watts, i.e. the so called distributed generation, having an impact for devices such as weather stations, medical devices, signal units, auxiliary power units, gas sensors and security cameras. By the end of the project, a bench-top single DEFC operating at intermediate-T will be built and tested.
Get Access to the 1st Network for European Cooperation
Log In