A stealth attack tool for preventing clinical drug.. (BACATTACK)
A stealth attack tool for preventing clinical drug resistance through a unique self-regenerating surface
(BACATTACK)
Start date: Jan 1, 2012,
End date: Dec 31, 2015
PROJECT
FINISHED
Outbreaks of clinical infections affect many thousands of patients in Europe yearly. The present effective treatment for infections is large doses of systemically applied drugs. There is a high risk of recurring infections and biofilm formation for patients dependent on long term in-dwelling catheters and the extended dependency on antibiotics result in clinical drug resistance. We present a new tool for minimizing drug resistance by upgrading existing and future medical devices through a unique self-regenerating surface that prevents biofilm formation by a two-fold stealth attack mechanism. This will be achieved by an interpenetrating polymer network (IPN) that allows for long term release of a range of antimicrobial strategies, such as antimicrobial peptides (AMPs) . The IPNs contain hydrogels where the AMP is stored until the release starts at the insertion of the device with an expected long-term effect. The first line of defence will be a fixed galvanic noble metal alloy coating that will prevent bacteria from colonizing the surface. Local and site-specific treatment with long term effect instead of systemic treatment implies improved patient management and citizen well-fare.
Get Access to the 1st Network for European Cooperation
Log In