A Diagonal Approach to CO2 Recycling to Fine Chemi.. (CO2Recycling)
A Diagonal Approach to CO2 Recycling to Fine Chemicals
(CO2Recycling)
Start date: Nov 1, 2013,
End date: Oct 31, 2018
PROJECT
FINISHED
Because fossil resources are a limited feedstock and their use results in the accumulation of atmospheric CO2, the organic chemistry industry will face important challenges in the next decades to find alternative feedstocks. New methods for the recycling of CO2 are therefore needed, to use CO2 as a carbon source for the production of organic chemicals. Yet, CO2 is difficult to transform and only 3 chemical processes recycling CO2 have been industrialized to date. To tackle this problem, my idea is to design novel catalytic transformations where CO2 is reacted, in a single step, with a functionalizing reagent and a reductant that can be independently modified, to produce a large spectrum of molecules. The proof of concept for this new “diagonal approach” has been established in 2012, in my team, with a new reaction able to co-recycle CO2 and a chemical waste of the silicones industry (PMHS) to convert amines to formamides. The goal of this proposal is to develop new diagonal reactions to enable the use of CO2 for the synthesis of amines, esters and amides, which are currently obtained from fossil materials. The novel catalytic reactions will be applied to the production of important molecules: methylamines, acrylamide and methyladipic acid. The methodology will rely on the development of molecular catalysts able to promote the reductive functionalization of CO2 in the presence of H2 or hydrosilanes. Rational design of efficient catalysts will be performed based on theoretical and experimental mechanistic investigations and utilized for the production of industrially important chemicals. Overall, this proposal will contribute to achieving sustainability in the chemical industry. The results will also increase our understanding of CO2 activation and provide invaluable insights into the basic modes of action of organocatalysts in reduction chemistry. They will serve the scientific community involved in the field of organocatalysis, green chemistry and energy storage.
Get Access to the 1st Network for European Cooperation
Log In